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The applicability of the simplified "rigid stream tube" method to many practical situations of calculating
micelle-polymer flooding in a system of wells is shown. The scheme of motion of the oil fringe in the pool
and the influence of the main parameters on the efficiency of the considered method for increasing oil recov-
ery are analyzed.

Introduction. One of the most important and urgent problems is increasing oil production from the bowels of
the earth. In obtaining oil from collectors by artificial flooding, it is impossible to extract it completely — usually no
more than 50% of the initial stock is displaced. The main reason for the insufficient efficiency of this production proc-
ess is oil confinement in a porous medium by capillary forces mainly due to the high surface tension at oil-water in-
terfaces. On the basis of experimental and theoretical investigations it has been found that a more complete working
of oil fields can be attained by decreasing considerably the surface tension between the displacing and pool liquids.
According to the results of the laboratory and experimental studies of the physicochemical methods for increasing oil
recovery, micelle-polymer flooding of oil pools is promising.

Basic Equations. To investigate the dynamics of the process of working some oil fields and determine the
sought technological indices, the use of the so-called "rigid stream tube" method [1–4] proved to be convenient and
efficient, although the filtration process of micelle-polymer displacement in two-dimensional regions is nonstationary
and the rate of motion of liquid particles along different streamlines may differ considerably [5]. Let us consider the
application of a variant of the method to calculate the flooding of a five-point scheme of oil pool working. Assuming
the necessary homogeneity of the pool, let us investigate one-fourth of a symmetry element, which we will break up
into Nt "stream tubes," i.e., subregions whose boundaries, as is considered, are the real streamlines of the filtering liq-
uid (Fig. 1). Assume Nt to be an integer. In so doing, either volumes (areas) of the tubes or injection well angles can
be chosen to be equal. For the condition of equal volumes of the tubes Vt, we have the following relations defining
the values of the tube apex angles at the injection (δγj

1) and production (δγj
2) wells characterizing such stream tubes

[4] (Fig. 1):
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Let us assume that as a result of the proposed break-up real stream tubes for the filtration flow under consid-
eration take place. Thus, independent flow of the mixture in each stream tube is obtained. Assume now that the flow
in an arbitrary jth tube consisting of ∆AEjEj+1 and ∆CEjEj+1 is plane-parallel and depends only on one spatial coordi-
nate — the radius. Let us replace triangles by sectors of adequate area with the same well angles. Then the radii of
these sectors Rj

i are defined as follows:
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Here the superscript i indicates belonging to ∆AEjEj+1 (i = 1) or ∆CEjEj+1 (i = 2). The flow throughout the tube is
considered to be continuous — equality of the rates of flow through the sector boundaries is assumed, while, generally
speaking, Rj

1δγj
1 ≠ Rj

2δγj
2. According to the terminology taken in [4], in the first sector with a center in the injection

well the axially symmetric flow will be intra-contour and in the second one — extra-contour.
We will assume that at a given injection rate Q(t) the volume flow of the liquid filtering in the jth tube is

proportional to the tube opening δγj
1:

Qj = Q (t) 
δγj

1

2π
 . (3)

In the case of micelle-polymer flooding, in the five-point system at such a choice of rigid tubes the quantity
of micella solution, as well as of thickened water injected in equal times into different tubes, will be different. It can
be shown that the flow region cannot be broken up into triangular stream tubes so that the oil fringes injected into the
tubes are equal with respect to the pore volumes of the tubes. Therefore, it is necessary to perform numerical calcula-
tions in each tube separately. The mathematical description of the plane-parallel flow model is given in [5]. To find
an approximate solution of the considered problem, we assumed the following.

To take into account the pressure distribution on the well, let us single out circles concentric with the well
contours, inside which the flow in sectors with a small opening will be assumed to be plane-parallel. Then the input
equations in this region — sectors with angle δγn — will take a simpler one-dimensional form:
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On a singled out circle of radius r∗, the solution and the normal component of the volume flow are considered to be
continuous, i.e., the problems in the "internal" and "external" regions, into which the filtration field is divided, are

Fig. 1. Scheme of breaking the pool symmetry elements ABCD into Nt
"stream tubes."
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solved simultaneously, and their solutions and derivatives "coalesce" at the interface. In the sectors acting as a stream
tube, the equations are of the form
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The substitution
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and then substitution of x2 by 1 − x2 reduce the system of equations (5) to a form that admits the possibility of
through counting along the full length of the tube:
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Knowing the solution of the system of equations (7) s(x, t), c1,3(x, t), c2,4(x, t) in each tube, one can determine in
them the current pressure distribution. In this case, the equation defining it
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Let us carry out in (7) substitution of variables (6). Integrating the equation obtained, we have
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where Vd is the dynamic volume of the porous medium occupied by a mobile liquid, and we assume thereby that

∑ 

i=1

2
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i  = 1, i.e., we ignore the quantity rw

2   ∑ 
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 ⁄ Vp.

Results of the Numerical Calculations. To satisfy the required stability condition of the difference scheme,
in each tube the ratio between time and space steps should satisfy the Courant condition
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So the calculations were performed with regard for the characteristic speeds of filtration in each stream tube. We
checked the required condition of correctness of the calculations performed — observance of material balance in the
jth stream tube:
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The integrals in (10) were calculated by the Simpson method. In the vicinity of the injection well, where the
integral has a singularity, it was calculated analytically with the use of the mean-value theorem

p (ε, τ) = 
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In the calculations, ε = 2∆x was assumed.
We simulated numerically the experiment [6], in which, as a pool model, a Bury bulk sandstone parallelepi-

ped with dimensions 44.5:62:1.5 cm and porosity m = 0.2 was used. The absolute permeability k = 0.5µm2. The pool
was initially saturated with oil at a residual water saturation s0 = 0.827. The viscosities of the pool oil (kerosene) and
water are, respectively, 1.8 and 1 kPa⋅sec. The phase permeabilities of water and oil for the given porous medium are
presented in [5, 7]. The composition of the micelle solution was as follows: c1,1

0  = 0.45, c1,2
0  = 0.34, c1,3

0  = 0.21. Con-
tacting the pool liquids, the solution formed a two-phase structure. The micelle solution viscosity relevant to the given
composition is 21 kPa⋅sec.

The buffer liquid was modeled by a polyacrylamide solution with a fictitious viscosity of 28 kPa⋅sec. The
sorption of surface-active substances was insignificant, and the sorption isotherm in the calculations was taken in the
form of the Henry law (H = 0.3). The calculations were performed for the dynamic variables for s1

∗ = 0.
The numerical solution of the system of equations (7) with the above-described closing relations has been de-

termined under the following initial and boundary conditions:

τ = 0 ,   s
_

0 = 1 ,   c
_

1,3 = c
_

2,4 = 0 ;

τ 8 (0, t1) ,   s
_
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_
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_
2,4 = 0 ;

Fig. 2. Comparison of the results of the numerical calculations (1) to the ex-
perimental data of [6] (2) on current oil recovery in five-point micelle-polymer
flooding; moments of water (3) and polymer (4) inrush into the production
well.
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Here τ = 0.1 and 0.6 are, respectively, the time of injection of the micelle solution into the pool and the time of ter-
mination of injection of the buffer liquid. The number of stream tubes Nt, into which 1/4th part of the pool element
is broken up, was taken to be equal to 6.

Figure 2 compares the results of the numerical calculations with those of the experimental investigations on
the dynamics of water-oil recovery in a five-point micelle-polymer flooding. Figure 2 shows the dependence of the
current oil recovery related to the pore volume of the pool:

η = ∑ 
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 ∫ 
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τ

F (1, τ) (1 − c1,3 (1, τ)) dτ , (15)

on the dimensionless volume of pumped liquid. As is seen, the oil is displaced incompletely (the average oil saturation
in the pool upon injection of one Vp was 7.8%).

The numerical solution, correctly expressing the dynamics of water and buffer liquid inrush into the produc-
tion well, shows agreement with the experimental data.

Figure 3 shows the character of the time evolution of the distribution of the oil-saturation and concentration
of surface active substances (SAS) in the tubes with the example of the 4th stream tube. It is seen that the mechanism
of oil displacement is similar to the linear case, i.e., constraint of the micelle solution occurs and a water billow is

Fig. 3. Distributions of the saturation with the hydrocarbon phase (1), and SAS
(2) and polymer (3) concentrations in "stream tube" 4 at various instants of
time: a) τ = 0.3; b) 0.4.

Fig. 4. Distribution of micelle solution fringes in different stream tubes at time
τ = 0.3; 1–6, stream tube numbers.
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formed in the region of the micelle solution because of the polymer adsorption. The absence of an oil billow is ex-
plained by the initial conditions. Approximately by the time τ = 0.5 the whole of the oil (in this tube) is displaced,
the micelle solution rushes into the production well, and subsequently only the constrained solution remains. The burst
on the SAS concentration curve for τ = 0.4 is due to the superposition of two jumps of the functions c1,3 and s,
which in numerical calculations are spread to a different extent, i.e., this is a limitation of the difference scheme rather
than a characteristic feature of the solution. In the other tubes the mechanism of displacement is analogous to the con-
sidered one except for the time discrepancy and the size of injected oil fringes

Vm.sj = 
Vm.s

2π
 δγk

i
 ,   k = 





j, i = 2, j ≤ 3 ;
j − 3, i = 1, j > 3 . (16)

Figure 4 shows the oil fringe position in different stream tubes for τ = 0.3. It is seen that the oil fringes
reach the tube end at different instants of time. Their volumes in the tubes also differ.

The pressure distribution in the stream tubes for the instants of time τ = 0.3 and 0.6 is given in Fig. 5. Be-
fore the break of an oil fringe and termination of injection in viscous liquids, the pressure drop between the tubes
along the length is small. For τ = 0.6 the pressure distribution in the tubes differs especially near the production well
because of the early break of the oil fringe in tubes 4 and 5.

The practical coincidence of the pressure drop curves points to the absence of large hydrodynamic pressure
drops between the tubes, which is indicative of a good fit of the chosen rigid tubes to real stream tubes.

Figure 6 shows the pressure drop between the production and injection wells in stream tube 4. The increase
and decrease in the pressure is due to the injection of high- and low-viscosity liquids, i.e., the pressure drops needed
to hold the rate of pumping liquids into the pool constant are maximum when it simultaneously contains high-viscosity
fringes of the micelle solution and the buffer liquid. Up to the instant of time τ = 0.6 (breakthrough of the micelle
solution fringe) δp increases and after the beginning of injection of a low-viscosity water into the pool it decreases.

Conclusions. the possibility of using the "rigid stream tube" method to calculate micelle-polymer flooding in
a system of wells has been analyzed. Comparison to the experimental data on the current oil recovery has been made.
The scheme of motion of the oil fringe has been analyzed. The applicability of the "rigid stream tube" method to
many practical situations has been shown.

The authors wish to thank R. I. Nigmatulin for useful discussions.

Fig. 5. Pressure distribution in different stream tubes at τ = 0.3 (a) and 0.6
(b): 1–6, stream tube numbers.

Fig. 6. Pressure drop between wells on stream tubes 4, 5, and 6.
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NOTATION

a, concentration of component adsorbed by the porous medium skeleton; cα,β, mass concentration of compo-

nent in a phase; c1,3, concentration of surface active substances in the hydrocarbon phase; c2,4, concentration of

polymer in the water phase; F, Buckley–Leverette function; F ′, partial derivative of F with respect to s; H, thickness
of the pool; k, absolute permeability of the porous medium; kα, relative phase permeability; m, medium porosity; Nt,

number of stream tubes; p, pressure; Q, volume flow; q = Q/H, flow rate in the two-dimensional problem; R, radius
of the well neighborhood; r, radial coordinate; r∗, singled-out radius; sα, phase saturation; s1 = s, oil saturation; s2 =

1 − s, water saturation; t, time; ∆t, time step of integration; V, tube volume; Vm.sj, relative volume of the oil fringe

injected into the jth tube; V, W, vectors; x, spatial coordinate; ∆x, integration step for x; H, Henry constant; γ,

angle; δγ, angle in the stream tube near the well; δγj
1, apex angle of the tube at the injection well; δγj

2, apex angle

of the tube at the production well; δp, pressure drop; ε, radius of the small neighborhood around the well; η, cur-

rent oil recovery coefficient; Λ, conductance of the mixture (Λ = k ∑ 

α=1

2
kα
µα

); µ, viscosity; ξ, integration variable; τ,

dimensionless time (coincides with the dimensionless volume of injected liquid (with respect to the porous volume of
the pool)); χ = qn

 ⁄ 2πr. Subscripts: m.s, micelle solution; p, porous; w, well; d, dynamic; j, stream tube number; 0,

initial value; α, phase index (α = 1, hydrocarbon phase; α = 2, water phase); β, component index (β = 1, oil; β =

2, water; β = 3, SAS; β = 4, polymer); overbar, dimensionless parameter (often omitted for simplification); *, re-
mainder value; t, stream tube.
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